Conversely, in a cost-constrained regime, fab leaders could consider performing a similar set of actions, but instead of maximizing throughput, they could consolidate the tools to fewer numbers and reduce fixed costs associated with the bottleneck tool groups. Furthermore, in a cost-constrained environment, the additional opportunity is to consolidate or reduce operations of more-complex tool groups outside of the bottleneck categories to improve overall margins without affecting overall fab capacity. For example, a fab may have a tool group consisting of ten tools, with each processing 500 wafers per day. By increasing the production capacity of each tool to 556 wafers per day by, for example, reducing downtime and idle events, the fab can achieve the same aggregate output using just nine tools. This allows the fab to turn off one tool, consolidate the workflow to the remaining nine tools, and reduce costs while maintaining the same overall production.
By properly identifying these bottleneck tools, fab leaders can focus on the tools that are truly limiting their fab capacity and identify which tools or tool groups may be further optimized for margins without a significant effect on fab capacity. Many semiconductor fab leaders have initiated root-cause-analysis workshops and standardized downtime action plans to ensure bottleneck equipment remains up and available more frequently, mitigating the accumulation of WIP and cycle time for any given tool group. Fabs that have employed these analytic approaches and solutions have seen up to a 30 percent increase in structural bottleneck tool group availability and a roughly 60 percent decrease in WIP sustained for extended periods of time. In these specific examples, fabs were seeking to increase throughput instead of optimize cost performance. In the same scenario, under a different economic or demand regime, a roughly 30 percent increase in bottleneck tool availability could translate to a proportionate reduction in total tools in operation for the same tool group, enabling a fixed cost reduction for this area of the fab.
Given the rapid paradigm shifts in the semiconductor industry, fab leaders are increasingly on the front line to drive value for their companies and are embracing tools that increase the visibility and efficiency of their operations to maximize value. The above analytical frameworks, cascading KPIs, and streamlined or transparent analytics are not novel—but they are critical for improving fab performance. Fab leaders can use advanced analytical frameworks as the scaffolding for continuous improvements, no matter the economic and demand conditions surrounding the fab and company at large.