Semiconductor fabs can optimize fab performance via transparent advanced analytics, chasing perfection one byte at a time.
来源: | 作者:volcos | 发布时间 :2024-10-10 | 874 次浏览: | Share:
The semiconductor industry is poised for recovery and long-term growth, projected to exceed $1 trillion in revenue by 2030. Despite fluctuations in demand for traditional chips, the market has seen a surge in demand for AI and automotive applications.
  • stable at or near the optimal production point

  • highly glutted with WIP, affecting cycle times and potentially choking throughput

  • oversupplied with WIP and underperforming and tools

  • undersaturated with WIP; provides an opportunity to increase WIP levels to drive additional throughput or to idle or reduce tool count (and further reduce fixed costs) to maintain the same output with fewer tools

  • expanded to a new performance frontier due to the addition of incremental tooling, increased performance, or capacity

  • This same set of events can also be triggered by increasing the mix and complexity of the devices made in the fab. As the complexity increases and more changeovers or conversions and WIP management become necessary, the position on the curve of output compared with WIP can change dramatically. Thus, improvement toward the optimal point could be due to a nonexhaustive combination of factors: rebalancing the wafer volume along the manufacturing process; optimizing the product start mix and batch sequencing (that is, increasing train size) to run larger batches, thereby minimizing setup and changeover losses based on the fab’s optimized start plan; and increasing equipment availability. Alterations in train size would likely necessitate buffer stock builds initially (or delivery date adjustments if approved by the customer) to ensure there are no lapses in shipment, but they could significantly improve output performance in high-mix fabs.

  • By setting target WIP levels, continuously adjusting inventory, maintaining or improving tool performance, and managing train size with capacity-backed optimized start-up sequencing, it is possible to steadily improve both inventory and cycle time while maintaining target shipment values. Some fabs were able to decrease WIP levels by 25 percent while maintaining stable monthly shipments over a 12-month transformation period because of their data-driven goals, enabled by saturation curves. Based on this success, fab leadership could consider options to decrease WIP levels to decrease the cycle time and reach optimal levels again.

  • Empirical equipment analytics to identify true bottleneck tools and direct actions to improve fab performance

  • In the prior section, we used WIP saturation analytics to set target WIP levels, which helped rebalance equipment inventories and manufacturing lines. In conjunction with adjusting WIP level, the quantity and performance of tools must also be considered. For example, if the WIP levels are remaining high and saturated but the throughput is low at a particular tool group, then this tool group needs a combination of increased availability, utilization, or tool quantity to improve line balance. In contrast, if the WIP levels remain low and the onset of saturation is never observed, then it may be possible to take a tool offline to save on operational expenditures without negatively affecting line balance. Here, we explain how empirical equipment analytics can be used to identify true bottleneck tools and improve fab performance in both cost and growth regimes.

  • Frequently, in long-standing operations, fab leaders rely on institutional knowledge, whether that is historical capacity models, design philosophies (for example, photo is always the bottleneck), or their experience to create lists of fab production bottlenecks. However, as processes change and mature over time or as product mix changes, this institutional knowledge can quickly become stale and outdated. Similarly, for relatively new fabs, relying only on design philosophies and capacity models may not fully capture production realities such as complex queuing schemes and the human element. Both scenarios present a risk that operations personnel focus on maintaining or maximizing performance of tools that are not truly bottlenecks.

  • Alternatively, fab leaders could use real-time data to identify areas or processes within the fab that act as bottlenecks and restrict the overall fab capacity to meet customer demand. This empirical approach is both data-driven and easily analyzed over multiple time periods (for example, weeks or years to determine if a tool is a transient or structural bottleneck). This approach can even pinpoint which equipment is causing delays in on-time deliveries (for example, accumulating WIP, cycle time, and variance) and enable strategic allocation of resources to enhance output based on the status of whether the tool is a bottleneck.

  • Exhibit 3 shows an empirical determination of bottlenecks, plotting weighted cycle time against WIP level variation. Tools located beyond the mean WIP weighted cycle time indicate some form of bottleneck, either transient (appearing at times due to maintenance events or mix changes) or structural (ever-present in gating WIP movement throughout the fab). Once identified, these bottlenecks can be appropriately categorized and managed. In growth regimes, fabs can focus on improving the availability and utilization of structural bottleneck tools and develop action plans for transient bottlenecks based on their occurrence criteria, with minimal or no capital investment to drive potentially significant increases in capacity and throughput.

  • Conversely, in a cost-constrained regime, fab leaders could consider performing a similar set of actions, but instead of maximizing throughput, they could consolidate the tools to fewer numbers and reduce fixed costs associated with the bottleneck tool groups. Furthermore, in a cost-constrained environment, the additional opportunity is to consolidate or reduce operations of more-complex tool groups outside of the bottleneck categories to improve overall margins without affecting overall fab capacity. For example, a fab may have a tool group consisting of ten tools, with each processing 500 wafers per day. By increasing the production capacity of each tool to 556 wafers per day by, for example, reducing downtime and idle events, the fab can achieve the same aggregate output using just nine tools. This allows the fab to turn off one tool, consolidate the workflow to the remaining nine tools, and reduce costs while maintaining the same overall production.

    By properly identifying these bottleneck tools, fab leaders can focus on the tools that are truly limiting their fab capacity and identify which tools or tool groups may be further optimized for margins without a significant effect on fab capacity. Many semiconductor fab leaders have initiated root-cause-analysis workshops and standardized downtime action plans to ensure bottleneck equipment remains up and available more frequently, mitigating the accumulation of WIP and cycle time for any given tool group. Fabs that have employed these analytic approaches and solutions have seen up to a 30 percent increase in structural bottleneck tool group availability and a roughly 60 percent decrease in WIP sustained for extended periods of time. In these specific examples, fabs were seeking to increase throughput instead of optimize cost performance. In the same scenario, under a different economic or demand regime, a roughly 30 percent increase in bottleneck tool availability could translate to a proportionate reduction in total tools in operation for the same tool group, enabling a fixed cost reduction for this area of the fab.


    Given the rapid paradigm shifts in the semiconductor industry, fab leaders are increasingly on the front line to drive value for their companies and are embracing tools that increase the visibility and efficiency of their operations to maximize value. The above analytical frameworks, cascading KPIs, and streamlined or transparent analytics are not novel—but they are critical for improving fab performance. Fab leaders can use advanced analytical frameworks as the scaffolding for continuous improvements, no matter the economic and demand conditions surrounding the fab and company at large.